create the graphs for a PCA analysis
from ExPosition
and generate the standard graphs and tables.
Note: Still Under Development.
Source: R/OTAplot.R
, R/OTAplotInference.R
, R/graphs4epPCA.R
graph4epPCA.Rd
OTAPlot
creates the graphs for a PCA analysis
from ExPosition
.
Note: Still Under Development.
OTAplotInference
graph4epPCA Create the inferential graphs from
results of a PCA run with
the package InPosition
.
graph4epPCA
graph4epPCA run a principal component
analysis
(with the ExPosition
package)
and generates the standard graphs and tables.
Note that the parameters
data, scale, center, DESIGN,
make_design_nominal, k
are passed
to the ExPosition
package unchanged
except for scale
which defaults now
to 'SS1'
.
Usage
OTAplot(
resPCA,
data,
DESIGN = NULL,
make_design_nominal = TRUE,
k = 0,
graphs = 12,
printGraphs = FALSE,
col4I = NULL,
col4J = NULL,
biplot = FALSE,
rotation = FALSE,
nfactor4rotation = "Kaiser",
show.TI = FALSE,
show.CI = TRUE,
mean.cex = 3,
mean.textcex = 3,
display.labels.ind = FALSE,
display.labels.var = TRUE,
display.points.mean = TRUE,
mean.constraints = NULL,
scale.mean.constraints = 1.5,
max.n4bar = 40,
max.n4heat = 50,
title.size.heatmap = 20,
save2pptx = FALSE,
title4pptx = "PCA Results"
)
OTAplotInference(
resPCA,
data,
DESIGN = NULL,
make_design_nominal = TRUE,
k = 0,
graphs = 12,
printGraphs = FALSE,
col4I = NULL,
col4J = NULL,
biplot = FALSE,
rotation = FALSE,
nfactor4rotation = "Kaiser",
niter.boot = 100,
niter.perm = 100,
save2pptx = FALSE,
title4pptx = "PCA Inference Results"
)
graph4epPCA(
data,
scale = TRUE,
center = TRUE,
DESIGN = NULL,
make_design_nominal = TRUE,
k = 0,
graphs = 12,
printGraphs = FALSE,
col4I = NULL,
col4J = NULL,
biplot = FALSE,
rotation = FALSE,
nfactor4rotation = "Kaiser",
inferences = FALSE,
save2pptx = "",
title4pptx = "PCA Results"
)
Arguments
- resPCA
Output from
InPosition::epCA.inference.battery
- data
A data frame or a matrix with numerical data suitable for a PCA. Passed to
ExPosition::epPCA
.- DESIGN
Default: NULL. A design vector (could be factor or character) or (Boolean) matrix used to assigne oobservations to groups. Passed to
ExPosition::epPCA
.- make_design_nominal
if TRUE (Default) transform the vector from
DESIGN
into a Boolean matrix. Passed toExPosition::epPCA
.- k
number of factor to keep; when equql to 0 (Default), all factors are kept. Passed to
ExPosition::epPCA
.- graphs
do we want graphs? Current Default is
12
which indicates that the graphs are generated for the first 2 components. Note that current version is creating output only for the first two components,- printGraphs
(Default: FALSE) do we want to print the graphics as
.png
?- col4I
a color vector for plotting the observations (if
NULL
Default) use colors fromExPosition::epPCA
.- col4J
a color vector for plotting the variables (if
NULL
Default) use colors fromExPosition::epPCA
.- biplot
De we want to create biplots (Default:
FALSE
)?- rotation
Do we want to rotate (with
varimax
) the variables (Default:FALSE
)- nfactor4rotation
number of factors to keep for the rotation, could be a number (note if the number is too big
nfactor4rotation
will default to 2), or a name (currently only'Kaiser'
which is the default). When'Kaiser'
is chosen, we keep only the components with an eigenvalue larger than average (whenscaled == 'SS1'
this is the familiar rule: "keep only the components with eigenvalue larger than 1").- show.TI
whether to plot the tolerance intervals or not. Default: FALSE
- show.CI
whether to plot the confidence intervals or not. Default: TRUE
- mean.cex
the size of the dots of the means. Default: 3
- mean.textcex
the size of the texts of the means. Default: 3
- display.labels.ind
If TRUE, the labels of observations will be printed. Default: FALSE.
- display.labels.var
If TRUE, the labels of variables will be printed. Default: TRUE.
- display.points.mean
If TRUE, the mean factor scores will be plotted. Default: TRUE.
- mean.constraints
A list of the constraints (that include
minx
,miny
,maxx
, andmaxy
) The constraints of the figure that only includes the means. This constraints will be used ifonly.mean = TRUE
. Default: NULL- scale.mean.constraints
A value used to scale the constraints (by multiplication). This function is used to adjust the constraints when the confidence or the tolerance intervals are outside of the figure. Default: 1.5
- max.n4bar
When the number of bars exceed this value, the labels will be hidden. Default: 40.
- max.n4heat
When the number of row/columns of a heatmap exceed this value, the labels will be hidden. Default: 50.
- title.size.heatmap
the size of the title of the heatmaps. Default: 20.
- save2pptx
Default: '' Not yet implemented,
- title4pptx
PARAM_DESCRIPTION, Default: 'PCA Results'. Not yet implemented,.
- niter.boot
(default = 100) How many iteration for the bootstrap for the mean of the
DESIGN
variable.- niter.perm
(default = 100) How many iteration for the permutation test for the eigenvalues.
- scale
scale (i.e., normalize) the columns of
data
. Default:TRUE
. Values could beTRUE, FALSE, 'Z', 'SS1'
.TRUE
defaults toSS1
. Passed toExPosition::epPCA
.- center
Default: TRUE. do we center the columns of
data
Passed toExPosition::epPCA
.- inferences
Run inferences from
InPosition
Remains to be done, Default isFALSE
.
Examples
if (FALSE) {
if(interactive()){
# Example from data4PCCAR
data("sixBeers12Descriptors10Judges", package = 'data4PCCAR')
df <- sixBeers12Descriptors10Judges$ratingsIntensity
res4graph <- graph4epPCA(data = df, scale = FALSE)
}
}
if (FALSE) {
if(interactive()){
# Example from data4PCCAR
data("sixBeers12Descriptors10Judges", package = 'data4PCCAR')
df <- sixBeers12Descriptors10Judges$ratingsIntensity
res4graph <- graph4epPCA(data = df, scale = FALSE)
}
}
if (FALSE) {
if(interactive()){
# Example from data4PCCAR
data("sixBeers12Descriptors10Judges", package = 'data4PCCAR')
df <- sixBeers12Descriptors10Judges$ratingsIntensity
res4graph <- graph4epPCA(data = df, scale = FALSE)
}
}